A Pulse Wave Velocity Based Method to Assess the Mean Arterial Blood Pressure Limits of Autoregulation in Peripheral Arteries
نویسندگان
چکیده
Background: Constant blood flow despite changes in blood pressure, a phenomenon called autoregulation, has been demonstrated for various organ systems. We hypothesized that by changing hydrostatic pressures in peripheral arteries, we can establish these limits of autoregulation in peripheral arteries based on local pulse wave velocity (PWV). Methods: Electrocardiogram and plethysmograph waveforms were recorded at the left and right index fingers in 18 healthy volunteers. Each subject changed their left arm position, keeping the right arm stationary. Pulse arrival times (PAT) at both fingers were measured and used to calculate PWV. We calculated ΔPAT (ΔPWV), the differences between the left and right PATs (PWVs), and compared them to the respective calculated blood pressure at the left index fingertip to derive the limits of autoregulation. Results: ΔPAT decreased and ΔPWV increased exponentially at low blood pressures in the fingertip up to a blood pressure of 70 mmHg, after which changes in ΔPAT and ΔPWV were minimal. The empirically chosen 20 mmHg window (75-95 mmHg) was confirmed to be within the autoregulatory limit (slope = 0.097, p = 0.56). ΔPAT and ΔPWV within a 20 mmHg moving window were not significantly different from the respective data points within the control 75-95 mmHg window when the pressure at the fingertip was between 56 and 110 mmHg for ΔPAT and between 57 and 112 mmHg for ΔPWV. Conclusions: Changes in hydrostatic pressure due to changes in arm position significantly affect peripheral arterial stiffness as assessed by ΔPAT and ΔPWV, allowing us to estimate peripheral autoregulation limits based on PWV.
منابع مشابه
برآورد سرعت موج پالس با استفاده از پارامترهای شریانی استخراج شده از تصاویر فراصوتی کاروتید
Background & Objective : Several indices have been introduced to estimate arterial stiffness that based on changes in brachial blood pressure. But because of the error resulted by the substitution of brachial blood pressure instead of the other central arteries, such as carotid, it will be very important to present elastic parameter based on the mechanical models without any emphasis on brach...
متن کاملPresentation of a Non-invasive Method of Estimating Arterial Stiffness by Modeling Blood Flow and Arterial Wall Based on the Determination of Elastic Module of Arterial Wall
Introduction: Arterial stiffness is an important predictor of cardiovascular risk. Several indices have been introduced to estimate the arterial stiffness based on the changes in the brachial blood pressure. Since the substitution of the blood pressure changes in the central arteries such as carotid with the blood pressure changes in the brachial results in error in the blood...
متن کاملArterial Stiffness and its Correlation with the Extent of Coronary Artery Disease
Introduction: Coronary artery disease secondary to atherosclerosis is the most common cause of mortality. Coronary angiography is the most precise method for determining the extent of disease in the coronary vascular bed. Arterial stiffness has been proposed as a marker of atherosclerosis in some studies. One of the noninvasive methods for the determination of arterial stiffness is Doppler echo...
متن کاملArterial blood pressure measurement and pulse wave analysis--their role in enhancing cardiovascular assessment.
The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken...
متن کاملEvidence of early degenerative changes in large arteries in human essential hypertension.
Noninvasive evaluation of brachial artery diameter (pulsed Doppler velocimetry) and pulse wave velocity (strain gauge mechanography) was performed in 23 normal subjects and 49 patients with uncomplicated essential hypertension. Pulsatile arterial function was described in terms of derived characteristic impedance and arterial compliance. Compared with normal controls, hypertensive patients had ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017